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Abstract
The lower boundary of Artin’s billiard on the Poincaré half-plane is
continuously deformed to generate a class of billiards with classical dynamics
varying from fully integrable to completely chaotic. The quantum scattering
problem in these open billiards is described and the statistics of both real and
imaginary parts of the resonant momenta are investigated. The evolution of
the resonance positions is followed as the boundary is varied which leads to
large changes in their distribution. The transition to arithmetic chaos in Artin’s
billiard, which is responsible for the Poissonian level-spacing statistics of the
bound states in the continuum (cusp forms) at the same time as the formation
of a set of resonances all with width 1

4 and real parts determined by the zeros of
Riemann’s zeta function, is closely examined. Regimes are found which obey
the universal predictions of random matrix theory (RMT) as well as exhibiting
non-universal long-range correlations. The Brody parameter is used to describe
the transitions between different regimes.

PACS numbers: 05.45.Mt, 03.65.Nk

1. Introduction

The quantum mechanics of billiard systems on surfaces of negative curvature has been
extensively studied over the last two decades, since the discovery that some compact billiards
on those surfaces had spectral statistics which violated the famous conjecture of Bohigas–
Giannoni–Schmit [1, 2] relating the level-spacing statistics to those of the Gaussian ensembles
for different symmetry groups. See [3] for an early review and introduction to the classical and
quantum descriptions of this geometry. Explanations for these phenomena have since been
forthcoming and the term ‘arithmetic chaos’ [4] coined to categorize them, since they are due
to those particular symmetries of the groups whose fundamental domains coincide with the
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billiards. Whereas a lot of work has been done on the bound states for such systems, much
less is known about the resonances in the continuum. Here, for the first time to the authors’
knowledge, an analysis is presented of the resonance spectrum for a whole class of hyperbolic
billiards which includes Artin’s billiard.

The simplest arithmetic group is the modular group, and Artin’s billiard corresponds to
half the fundamental domain of that group. It thus shares one symmetry class of eigenfunctions
and eigenvalues of the Laplacian defined on the full domain. It has also been considered as
a model for the early universe in [5] and, extended to three dimensions, in [6]. Deformations
to the domain, including a fully-integrable case, were studied in [5] for the case of Dirichlet
boundary conditions on the billiard walls. Here, we consider the same class of deformations,
but for the billiard with von Neumann boundary conditions on all walls. This difference
changes the nature of the quantum system fundamentally, for it allows states which escape to
infinity, thus opening the system and putting us in the realm of scattering theory.

Remarkably, the scattering theory for the special case of Artin’s billiard is analytically
solvable and of particular interest due to the resonances being determined by the non-trivial
zeros of Riemann’s zeta function [7]. These are well known to possess Gaussian unitary
ensemble (GUE) level-spacing statistics [8]. It is also the case for Artin’s billiard that a set
of bound states exist superimposed on the scattering continuum (so-called ‘cusp forms’ in
mathematics). Such states arise in atomic scattering when the parameters of a system conspire
to give zero coupling to the continuum, and are extremely sensitive to perturbation of those
parameters [10]. Here the cusp forms are treated as part of the resonance continuum. The
variation of the resonance positions on smoothly changing the boundary of the billiard is
studied. For the statistics of the real parts of the resonance positions, one sees in the nearest-
neighbour distribution the transition from Poissonian for the integrable case to Gaussian
orthogonal ensemble (GOE) and back to Poissonian again in the arithmetic case. For the
width distribution, it is shown how it evolves into a χ2 distribution initially, but then splits
into two distinct groups, one of which moves closer to the real axis and the other which forms
the resonances given by the zeros of the Riemann zeta function. As the boundary is further
varied, the χ2 distribution is again recovered. The two-point correlation function is also
studied through the Fourier transforms of the spectra and the correlation between the positions
and widths is examined. Both universal correlations predicted by RMT and non-universal
correlations are found in certain parameter ranges.

The billiard system and deformation considered are introduced in section 2 as well as the
methods involved in the calculation of the resonances. The statistics of the resonances are
investigated in section 3 and conclusions are reserved for section 4.

2. Billiards on the Poincaré half-plane

Artin’s billiard is the infinite triangle in the Poincaré half-plane representation of hyperbolic
geometry with angles π/2, π/3 and 0. This is the triangle bounded by the unit circle and the
lines x = 1/2 and x = 0, or using a complex plane notation it is the right-hand half of the
modular domain, defined by the lines z = ±1/2 + iy and the inequality |z| � 1.

In the scheme of Csordás et al [5], the lower boundary of the domain is parameterized
by a real number, the ‘control parameter’ 0 � Cp � 2. Cp is the inverse radius of the circle
passing through z = ı which has its centre on the imaginary axis in Im(z) � 0. Thus, on the
lower boundary

y = 1 − Cpx2

1 +
√

1 − C2
px2

. (1)
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Figure 1. The billiards considered on the Poincaré half-plane.

The integrable case corresponds to Cp = 0, i.e. the boundary lies at y = 1, and Artin’s
billiard has Cp = 1. For Cp > 2, the lower part of the billiard becomes open as well as the
top. Here, the variation of the resonance spectrum is studied as Cp varies continuously in the
range 0 < Cp � 2.

Since the metric in the Poincaré half-plane is gij = y−2δij , the appropriate Schrödinger
equation for these billiards is

y2

(
∂2

∂x2
+

∂2

∂y2

)
� = −λ�, (2)

where λ = 2mE/h̄2 + 1
4 and E is the energy of a particle of mass m [7, 11].

Solutions of (2) are sought which obey von Neumann boundary conditions on all walls.
Considering first this boundary condition on x = 0 and x = 1/2, that is

∂�

∂n̂
= 0, (3)

where ∂
∂n̂

is the normal derivative of the wavefunction on the boundary, one can separate (2)
and write an infinite set of solutions which obey (3) for fixed λ that decay (as y tends to
infinity), in the form

ψm(k; x, y) = cos(2πmx)
√

yKık(2πmy), m ∈ N, (4)

where k = √
2mE/h̄ is the scaled momentum and Kık is the modified Bessel function of

imaginary order.
The above solutions together with the continuum solution of the form

ψ0(k; y) = y1/2(y−ık + S(k)yık), (5)

which represents incoming and outgoing waves at infinity, form a complete set of states for
the scattering problem. S is the scattering matrix, here a scalar since there is only one
scattering channel possible. To satisfy the boundary condition (3) on the lower boundary in
figure 1 at an arbitrary energy E one must take a linear combination of the above solutions
in (4) and (5).
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In order to calculate the resonance energies, one must enforce the outgoing wave
boundary condition at infinity instead of the form given in (5), i.e. we replace (5) by
ψ0(k; x, y) = y1/2+ık . The full wavefunction is thus expanded in the form

�N(k; x, y) =
N−1∑
m=0

Amψm(k; x, y). (6)

This wavefunction by construction represents a resonance state and obeys the von
Neumann boundary condition at x = 0 and x = 1/2. Finally to determine the coefficients
Am and the complex resonance eigenenergies or eigenmomenta k, one must enforce the
von Neumann boundary condition on the lower boundary. To do this one uses a modified
collocation method, following the example of Csordás et al [5] (see [13] for further discussion
of the method’s advantages). One calculates the normal derivative of (6) on the lower boundary
and Fourier expands it into a set of N orthogonal functions sin

(
nπs
L

)
.

The Fourier coefficients of this expansion Dn are given by

Dn =
N−1∑
m=0

CnmAm, (7)

where

Cnm =
∮

ds sin
(nπs

L

) ∂ψm

∂n̂
(k; s), n = 1, . . . , N. (8)

s is a parametrization of the lower billiard boundary and L its length in that parametrization.
Here, the simple relation

s = x (9)

is taken on the lower boundary, where the normal derivative is given by

∂

∂n̂
= y

(
Cpx

∂

∂x
+

√
1 − C2

px2
∂

∂y

)
(10)

in this parameterization and x ranges from 0 to L = 1/2. The normal derivative is identically
zero on the rest of the boundary by construction. The boundary condition on the lower
boundary is now satisfied by setting the Fourier coefficients equal to zero or equivalently by
searching for the complex values k such that the determinant of the N × N complex matrix
Cnm is zero. The summations are necessarily truncated at N, but N is chosen sufficiently
large to achieve convergence of the eigenvalues. The higher the energy of the resonance the
more values of n and m are required. A scaling with momentum of N = int(rscal + 1), where
rscal = 3 Re(k)/4π and int means taking the integer part of the expression, was found to yield
zeros to the desired precision compared with the known cases Cp = 0 and Cp = 1. For higher
values of N, the Bessel functions included become exponentially small and do not contribute
significantly.

After scaling each row of the matrix by its largest element to avoid overflowing the
maximum computational precision available, a singular-value decomposition is performed to
ease detection of the complex zeros [14, 15]. The method produces results in agreement with
those in the literature [16, 17, 9] for the known case of Cp = 1 and with separately calculated
values for Cp = 0, to the desired precision.

In the integrable case (Cp = 0), the scattering has no resonances. All the eigenvalues are
real and are given by the zeros of the derivatives at y = 1 of the functions (4) given above,
that is they are determined by the condition[

∂

∂y
(
√

yKık(2πmy))

]
y=1

= 0. (11)
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These corresponding eigenvalues, kn, were calculated using Mathematica’s [18] FindRoot
function.

In order to calculate the widths and positions of the resonances at new values of Cp, first
many eigenvalues for the integrable problem (Cp = 0) were calculated as described above.
Using these values as seeds for the calculation, Cp is varied a little, and a search in the complex
plane for zeros of the least singular value of the matrix C near to the old values is performed.
Then Cp can be varied again, by larger amounts at each step, as information about the velocity
of each resonance with Cp allows better guesses as to the perturbed value.

The most time consuming part of the routine aside from the iterations required to reach
any desired value of Cp is the setting up of the matrix (8) due to the many calculations of the
Bessel functions (here involving complex values of k) required for each element. Powerful
expansions similar to those in [5] are used taken mostly from [19] but largely based on routines
used in [20].

The second case where there are results available [16, 17, 9] to check against those
obtained here is for Artin’s billiard (Cp = 1). Using a method analogous to the method
of images in electrostatics, the S matrix (here just a scalar since there is only one scattering
channel open) can, surprisingly, be calculated explicitly. The result is [7, 11]

S(k) = π−ık�
(

1
2 + ık

)
ζ(1 + 2ık)

πık�
(

1
2 − ık

)
ζ(1 − 2ık)

, (12)

where �(z) is Euler’s gamma function and ζ(z) is Riemann’s zeta function. The resonances
(poles of S) are given by the zeros of the denominator, which occur at k = kn/2 − ı/4,
according to the Riemann hypothesis, where the kn are the Riemann zeros. The ‘trivial’ zeros
are handily cancelled by the gamma functions. The kn are well known [8] to possess GUE
level-spacing statistics. However, superimposed on this continuum are an infinite set of bound
states (zero width) with Poissonian statistics due to arithmetic chaos [12]. The numerical
results presented here give both the resonances on the critical line and the cusp forms in one
calculation.

3. Resonance statistics

3.1. The widths

The width of a resonance is taken here to be the absolute value of its imaginary part. In atomic
physics, resonances correspond to meta-stable states of a compound system, and the lifetime
of a state is directly related to its width [27]. Here the widths of the eigenmomenta, not
eigenenergies, are studied, since the interesting behaviour is more apparent in the momentum
plane and since the two are simply related in a billiard system. Behaviour seen generically in
atomic and other scattering problems is also seen here.

In random matrix models of quantum scattering, two limiting regimes can be considered;
that in which the system is only ‘weakly’ open and resonances do not overlap much (their
widths are small compared to their spacing on the real axis) and that in which there is strong
coupling of the system to the continuum, where resonances may be broad and generally
overlap.

The system considered here is relatively simple in that there is only one channel open for
scattering (only one state which corresponds to a particle escaping to infinity). In general, in
the case of weak coupling to continua, first order perturbation theory is adequate to calculate
the resonance widths in terms of eigenfunctions of a suitable closed system (this can be done
here by closing the billiard at some sufficiently high value of y). In this case, random matrix
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Figure 2. Integrated width density of 400 resonances for Cp = 0.1 and for Cp = 0.7. The dashed
curve is the integrated Porter–Thomas distribution.

theory predicts that the width distribution for a chaotic system with M weakly open channels
is given by the χ2 distribution [28],

ρ(wn) = (ν/2)(ν/2)

�(ν/2)
w(ν/2−1)

n exp
(
−ν

2
wn

)
, (13)

where wn is the resonance width normalized to its mean value, the parameter ν = M or ν = 2M

for systems with time-reversal invariance or broken time-reversal invariance respectively, and
�(x) is Euler’s gamma function again. For the system considered here, ν = 1 and the
corresponding distribution is known as the Porter–Thomas distribution, first derived in [29]
where it provided a good fit to neutron–nuclei resonances.

Figure 2 shows the numerical integrated width density I (w) for Cp = 0.1 and Cp = 0.7.
The case Cp = 0.1 is very close to the integrable system with no resonances at all and the
resonances are only just starting to move off the real axis. The dashed line is the integrated
Porter–Thomas distribution

I (w) = erf(
√

wn/2), (14)

where erf(x) is the error function, which for Cp = 0.7 is a reasonable fit.
Figures 3–5 show the transition to arithmetic chaos in Artin’s billiard as we vary Cp near

Cp = 1. The width distribution initially separates into two classes which at Cp = 1 become
concentrated exactly at w = 0 and w = 1

4 . This separation is reminiscent of the so-called
‘trapping phenomenon’, which occurs generically when the coupling to continua exceeds some
critical value. M very unstable states (broad resonances) are formed, while the remainder of
the spectrum moves back to the real axis [33, 30, 31]. However, this ‘spectral reorganization’
usually only generates a number of broad states equal to the number of channels M which is
not the case here, since M = 1 and an infinite set of broad states are found. As Cp is increased
further the two groups merge again and the χ2 distribution is again recovered at Cp ≈ 1.2 (see
figure 5). The phenomenon seen here is attributed purely to the arithmetic chaos at Cp = 1.
Note that the number of resonances available is reduced as Cp increases due to the calculations
being seeded at Cp = 0.

3.2. Level-spacing statistics

The statistics of the real parts of the resonances were also investigated. Unlike the situation
for the eigenvalues of closed billiards [5], there is no formula corresponding to Weyl’s law
for the asymptotic density of resonance states. Instead, a numerical fit to the data is first
done, to allow the ‘unfolding’ of the spectrum to one with unit mean level density, via the
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Figure 3. Integrated width densities of 300 resonances for 0.90 < Cp < 0.96. The dashed curve
is the integrated Porter–Thomas distribution.
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Figure 4. Integrated width densities of 200 resonances for 0.98 < Cp < 1.04. The dashed curve
is the integrated Porter–Thomas distribution.

transformation

xi = N̄(ki), (15)

where N̄(k) is the fitted integrated density of states for the particular billiard considered.
In terms of statistics of the unfolded eigenmomenta, the nearest-neighbour distribution

is considered. The graph on the left-hand side of figure 6 shows the integrated distribution
I (s) of spacings between neighbouring unfolded levels (s = xi+1 − xi) for the case Cp = 0,
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Figure 5. Integrated width densities of 200 resonances for 1.04 < Cp < 1.2. The dashed curve is
the integrated Porter–Thomas distribution.
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Figure 6. Integrated level-spacing distribution of 400 resonances for Cp = 0 and for Cp = 0.7.
The dashed line is the integrated Poisson distribution, the finely dashed line is the GOE prediction
and the solid line is the GUE prediction.

where the classical phase-space is completely integrable [21]. The distribution follows the
Poissonian (dashed line) distribution

I (s) = 1 − e−s , (16)

which is predicted for generic integrable systems [22, 23]. Also shown are the integrated
Wigner surmise for both the GOE (Gaussian orthogonal ensemble) (finely dashed line)

I (s) = 1 − e−πs2/4, (17)

and the GUE (Gaussian unitary ensemble) (solid line)

I (s) = − 4

π
s e− 4

π
s2

+ erf(2s/
√

π), (18)

which are very close to the distributions predicted for fully chaotic systems with time-reversal
invariance and broken time-reversal invariance, respectively [24].

In the graph on the right-hand side of figure 6, the same information is shown for Cp = 0.7
(where the classical phase-space has become almost completely chaotic [21]). The distribution
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Figure 7. As figure 6 for 300 resonances at Cp = 1 and for 200 resonances at Cp = 1.2. The thick
curve in the Cp = 1 graph is a weighted average of the integrated Poisson and GUE densities.

seems to be well described by the GOE curve. In the graph on the left-hand side of figure 7,
the distribution is shown for Cp = 1. As expected, it does not fit any of the distributions. The
group of resonances with width 1

4 are known to follow GUE statistics [8] whereas the cusp
forms obey the Poisson distribution. However, in the graph on the left-hand side of figure 7 a
fourth curve (thick line) is plotted which is a sum of (16) and (18) weighted by the percentage
of resonances from each class (approximately in the ratio 3:1 of cusps to resonances). It gives
a far better fit to the data than any one of the single distributions. Finally, as Cp is increased
further to Cp ≈ 1.2, the GOE behaviour is recovered for the resonance positions (see the
graph on the right-hand side of figure 7).

A method for parametrizing the variation between these distributions was proposed by
Brody [25]. Although it has no sound theoretical basis such as is the case for those methods
that base the parametrization on the percentage of classical phase-space which is completely
chaotic, it is simple and may be applied to the situation near Cp = 1 where the change in
statistics is due to arithmetic chaos, not a change in the classical phase-space. This is also the
parametrization used in [21].

The Brody distribution, normalized to unit mean and total probability, is given by [26]

p(s, ν) = a(ν)(ν + 1)sν exp(−a(ν)sν+1), (19)

where

a(ν) =
(

�

(
ν + 2

ν + 1

))ν+1

(20)

and �(x) is Euler’s gamma function. For ν = 0, this gives (16) and for ν = 1 (17) is obtained.
The integrated level density of the Brody distribution is

I (s, ν) =
∫ s

0
p(x, ν) dx = 1 − exp(−a(ν)sν+1). (21)

Brody distributions were fitted to the numerical integrated density functions obtained
(the error on the fit is much lower than for fitting to the density itself), using the method of
least squares. The calculated values of ν give a useful measure of how close the distribution is
to (16) or (17). Figure 8 shows the variation of the derived ν with Cp in the range 0 � Cp � 1.2.
A similar result was obtained by Csordás et al in [21], for the bound states for billiards with
Dirichlet boundary conditions. The distribution moves from Poissonian in the case where the
classical dynamics are fully integrable up to GOE when they are completely chaotic. The
sharp transition to near-Poissonian statistics at Cp = 1, in the sense that there are many more
cusp forms than resonances with width 1

4 in a given energy range, is shown in more detail.
The value of ν obtained here for Cp = 1 agrees well with the scaling behaviour with N, the
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Figure 8. Variation of the Brody parameter ν with Cp .
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Figure 9. Gaussian smoothed absolute square of the Fourier transform of the spectrum at Cp = 0
and for Cp = 0.7. The smooth line is the GOE prediction.

number of eigenvalues found, which was seen in [21]. The transition to arithmetic chaos at
Cp = 1 is clearly defined.

3.3. Fourier transform of the spectra

To check on higher order correlation functions, e.g. two-point correlations, and to compare
further with RMT predictions the Fourier transform of the positions of the resonances have
been calculated [32]. Figure 9 shows the modulus squared of the direct Fourier transform,

C(t) =
∫ ∞

−∞

N∑
i=1

δ(ki − k) e−2πıkt dk, (22)

of the real parts of the resonance positions for the values of Cp shown, after a Gaussian
smoothing has been applied with width σ = t/10, following Alt et al [34] who give a recent
review of the method in the context of superconducting microwave billiards. In addition, the
ensemble averaged curve predicted by RMT for the GOE is plotted.

|C(t)GOE|2 = |b(t) − 1|2, (23)

where

b(t) =
{

1 − 2t + t ln(1 + 2t) 0 < t < 1
−1 + t ln((2t + 1)/(2t − 1)) t > 1.

The Fourier transforms were performed on 300 levels. The correlation hole predicted by
RMT for GOE systems for small t is present in the case Cp = 0.7 and is filled for Cp = 0,
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1 2 3 4
t

0.5

1

1.5

2

2.5

3

3.5

4
Cp=1.2|C(t)|^2

Figure 10. Gaussian smoothed absolute square of the Fourier transform of the width-weighted
spectrum at Cp = 1.2. The smooth line is the GOE prediction.
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Figure 11. Gaussian smoothed absolute square of the Fourier transform of the width-weighted
spectrum at Cp = 0.7 (left) and the same for the widths distributed randomly rather than on their
corresponding positions (right). The smooth line is the GOE prediction.

consistent with RMT predictions for a system obeying Poissonian statistics. In the case
Cp = 1, it is well known that the Fourier transform for the spectrum defined by the Riemann
zeros follows the GUE prediction remarkably closely [8]. The same behaviour is seen in the
Fourier transform for Cp = 1.2 as for Cp = 0.7.

3.4. Correlations between widths and positions

It is also of interest in scattering systems to examine if there is any correlation between the
positions and widths of the resonances. RMT predicts that there should be no correlation for
weakly open systems with isolated resonances. This can be tested for, again using Fourier
transforms, but now applied to a spectrum weighted by the widths [35]:

C(t) =
∫ ∞

−∞

N∑
i=1

wiδ(ki − k) e−2πıkt dk. (24)

The prediction of random matrix theory for the GOE case is that the correlation hole is
filled by two-thirds [35], as is seen in figure 10 for Cp = 1.2.

However for Cp = 0.7, as seen on the left-hand side of figure 11, there is a dip in the
Fourier transform for very short times which is at odds with RMT predictions even though
the widths are well described by the Porter–Thomas distribution and the resonance positions
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by GOE and the RMT two-point correlation function. The graph on the right-hand side of
figure 11 demonstrates that the correlations are destroyed if the widths are assigned randomly
to positions. This indicates the existence of long-range non-universal correlation between
the positions and widths. A similar correlation between positions and intensities was found
in a study of chaotic Rydberg molecules [35]. The origin of the above correlations will be
investigated in future work.

4. Conclusions

A class of open billiards on the Poincaré half-plane parametrized by the inverse-radius of the
lower boundary was investigated. The resonance positions were determined as a function
of this parameter. The classical dynamics of these billiards varies from integrable to fully
chaotic and good agreement was found with the predictions of random matrix theory for
the distributions of both the spacings of the real parts of the resonant momenta, and for
the absolute values of the imaginary parts. As variation in the parameter brings the system
closer to Artin’s billiard, the resonances divide quickly into two classes. The first is those
resonances with width 1

4 , which possess GUE level-spacing statistics, and the second is those
resonances which move back to the real axis where they form bound states with Poissonian
level-spacing statistics. This transition was investigated more closely and a Brody parameter
was found to give a good fit of the variation of the distributions. Increasing the parameter
further, the resonances redistribute themselves and the two groups merge once again to form
distributions consistent with random matrix theory. In certain parameter ranges, non-universal
long-range correlations were seen in the Fourier transform of the width-weighted spectrum
indicating correlations between the resonance positions and widths. These correlations will
be investigated in future work.
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